Tetrahedron Letters No. 9, pp 811 - 814, 1978. Pergamon Press. Printed in Great Britain.

SYNTHESIS OF SULFINES BY AN ALKYLIDENATION OF SULFUR DIOXIDE USING a-SILYL CARBANIONS¹

M. van der Leij, P.A.T.W. Porskamp, B.H.M. Lammerink and B. Zwanenburg*

Department of Organic Chemistry, University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands

(Received in UK 30 December 1977; accepted for publication 9 January 1978)

The most important route for the preparation of sulfines is that involving the oxidation of thiocarbonyl containing compounds with peroxycarboxylic acid³. A challenging approach to the synthesis of sulfines is the alkylidenation of sulfur dioxide. In the preceding paper² we described the successful preparation of some sulfines by means of the reaction of Wittig reagents with SO₂. The stimulus of this result led us to explore the use of α -silyl carbanions in this connection, in view of the usefulness of these ions in olefination reactions. As was shown first by Peterson⁴ and later by others⁵ an efficient alkylidenation of aldehydes and ketones can be achieved by using α -silyl carbanions as pictured in Scheme 1. The driving force of the elimination of trimethylsiloxide is the formation of the energetically favourable silicon-oxygen bond.

Scheme 1

The present communication deals with the reaction of a-silyl carbanions

with SO_2 as electrophile with the aim to prepare sulfines in the manner depicted in Scheme 2.

A solution of fluorene <u>la</u> in THF was treated with one equivalent of n-butyllithium at -78° , stirred at 20° for one hour and then quenched with one equivalent of trimethylsilyl chloride at -78° affording, after one hour at 20° , 9-trimethylsilyl fluorene <u>2</u>a. This solution of <u>2</u>a was then treated with one equivalent of n-butyllithium at -78° . After stirring for one hour at 20° excess of gaseous $S0_2$ was passed through at -78° until a change of colour from dark red to light green was observed. By raising the temperature to 20° the colour changed gradually to orange indicating that sulfine formation had taken place. Then the reaction mixture was poured into a saturated aqueous solution of ammonium chloride. Subsequent work-up and chromatography on silica gel (benzene) furnished sulfine <u>4</u>a in 80% yield.

By using essentially the same procedure the sulfines $\underline{4}b$ -g were prepared from the corresponding methylene compound $\underline{1}b$ -g (see Table).

In order to establish the experimental conditions for the respective steps the silylated products 2a, b, c, f and g were isolated and converted into the corresponding sulfines in a separate reaction. It was found that the control of temperature during the formation of the anions of 1 and 2, as well as during the reaction with SO_2 , is of crucial importance. In the case of 1g bis-silylation could be prevented by adding its anion to trimethylsilyl chloride in THF at -78° . The best results for the conversion of 2 to 4 were obtained by adding the anion of 2 to an excess of SO_2 in THF at -78° . It is suggested that an excess of SO_2 has a beneficial effect on the elimination of trimethylsiloxide from 3 (Cf. ref. 6).

This new synthesis of sulfines has several attractive features. First of all, the required α -silyl carbanions can be obtained from readily available active methylene compounds. Secondly, it is experimentally simple, it can be performed without isolation of intermediate products (essentially a one pot procedure). Thirdly, new types of sulfines can be prepared which are not accessible via the oxidation route, e.g. $\underline{4}g$. This method compares favourably with the Wittig alkylidenation² of SO₂ in view of the availability of the starting materials (suitable phosphorous ylids *versus* active methylene compounds and α -silyl carbanions) and the mildness of the conditions.

The sequence pictured in Scheme 2 represents a Peterson alkylidenation of SO₂. Alternatively, however, this synthetic scheme can be considered as an introduction of an =SO moiety into the substrate <u>1</u>. Therefore, we propose to name this process a sulfination reaction of a methylene group. Further studies of such sulfinations are in progress.

	Starting material		<u>Sulfine</u> O	Yield*
<u>1</u> a	\bigcirc	<u>4</u> a		80%
<u>1</u> b	(0)	<u>4</u> b		80%
<u>1</u> c	PhCH ₂ SPh	<u>4</u> c	$PhC(SPh) = S^{\neq 0}$	60%
<u>1</u> d	PhCH2S02Ph	<u>4</u> d	(2/2 - 20/347) PhC(SO ₂ Ph)=S ⁽⁷⁾ (E only)	70%
le	(PhS) ₂ CH ₂	<u>4</u> e	(PhS) 2C=S ²⁰	80%
<u>l</u> f	$\langle -s \rangle$	<u>4</u> f**		80%
<u>1</u> g	PhCH ₂ CN	<u>4</u> g***	PhC (CN) = S^{0} (Z+E)	418

Physical and spectral data correspond with those reported in the literature: 4a,b: ref. 3a; 4c,d: ref. 3b; 4e: ref. 7; 4g: ref. 8. For 4f a correct elemental analysis was obtained, IR (v_{SO}): 1090 cm⁻¹, m.p. $44-45^{\circ}$.

* All yields are based on substrate 1.

** Tetramethyl ethylenediamine was added as stabilizing agent in the first step.

*** The base in the first step was lithium diisopropylamide; this sulfine was obtained from isolated 2g.

TABLE

References

- 1 . Part 38 of the series "Chemistry of Sulfines", part 37 see ref. 2.
- 2. B. Zwanenburg, C.G. Venier, P.A.T.W. Porskamp and M. van der Leij, Tetrahedron Lett., accompanying paper.
- 3a. B. Zwanenburg, L. Thijs and J. Strating, *Rec. Trav. Chim.* <u>86</u>, 577 (1967);
 b. Idem, *Ibid.* <u>90</u>, 614 (1971); other references as well as other methods for the preparation of sulfines are given in ref. 2.
- 4. D.J. Peterson, J. Org. Chem. 33, 780 (1968).
- 5. T.H. Chan, E. Chang and E. Vinokur, *Tetrahedron Lett.*, 1137 (1970);
 K. Shimoji, H. Taguchi, K. Oskima, H. Yamamoto and H. Nozaki, *J. Amer. Chem. Soc.* <u>96</u>, 1620 (1974); F.A. Carey and A.S. Court, *J. Org. Chem.* 37, 1926 (1972); I. Fleming, *Chem. Ind.* 449 (1975).
- 6 . T.H. Chan and E. Chang, J. Org. Chem. 39, 3264 (1974).
- 7. B. Zwanenburg, L. Thijs and J. Strating, Tetrahedron Lett., 3453 (1967).
- 8 . M. Ohoka, T. Kojitani, S. Yanagida, M. Okahara and S. Komori, J. Org. Chem. <u>40</u>, 3540 (1975).